44 research outputs found

    Adaptive multi-agent system for a washing machine production line

    Get PDF
    This paper describes the implementation of a multi-agent system in a real industrial washing machine production line aiming to integrate process and quality control, allowing the establishment of feedback control loops to support adaptation facing condition changes. For this purpose, the agent-based solution was implemented using the JADE framework, being the shared knowledge structured using a proper ontology, edited and validated in Protégé and posteriorly integrated in the multi-agent system. The solution was intensively tested using historical real production data and it is now being installed in the real production line. The preliminary results confirm the initial expectations in terms of improvement of process performance and product quality

    Planning and Choosing: Augmenting HTN-Based Agents with Mental Attitudes.

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.This paper describes a new agent framework that fuses an HTN planner, through its underlying conceptual model, with the mental attitudes of the BDI agent architecture, thus exploiting the strengths of each. On the one hand, the practical and proven ability to reason about actions that is the strength of HTN planning fleshes out the option generation function in the inference loop of the BDI model; on the other hand, the mental attitudes make explicit the knowledge that plays an essential role in plan selection, an important aspect that is not considered in the traditional formulation of the planning problem. The result is a coherent framework that allows for the design and implementation of activity-centric rational agents

    Bilateral negotiation in a multi-agent supply chain system

    Get PDF
    A supply chain is a set of organizations directly linked by flows of services from suppliers to customers. Supply chain activities range from the ordering and receipt of raw materials to the production and distribution of finished goods. Supply chain management is the integration of key activities across a supply chain for the purposes of building competitive infrastructures, synchronizing supply with demand, and leveraging worldwide logistics. This paper addresses the challenges created by supply chain management towards improving long-term performance of companies. It presents a multi-agent supply chain system composed of multiple software agents, each responsible for one or more supply chain activities, and each interacting with other agents in the execution of their responsibilities. Additionally, this paper presents the key features of a negotiation model for software agents. The model handles bilateral multi-issue negotiation and incorporates an alternating offers protocol, a set of logrolling strategies, and a set of negotiation tactics

    Recent developments and future trends of industrial agents

    Get PDF
    The agent technology provides a new way to design and engineer control solutions based on the decentralization of control over distributed structures, addressing the current requirements for modern control systems in industrial domains. This paper presents the current situation of the development and deployment of agent technology, discussing the initiatives and the current trends faced for a wider dissemination and industrial adoption, based on the work that is being carried out by the IEEE IES Technical Committee on Industrial Agents

    A large-scale multi-objective flights conflict avoidance approach supporting 4D trajectory operation

    Get PDF
    Recently, the long-term conflict avoidance approaches based on large-scale flights scheduling have attracted much attention due to their ability to provide solutions from a global point of view. However, the current approaches which focus only on a single objective with the aim of minimizing the total delay and the number of conflicts, cannot provide the controllers with variety of optional solutions, representing different trade-offs. Furthermore, the flight track error is often overlooked in the current research. Therefore, in order to make the model more realistic, in this paper, we formulate the long-term conflict avoidance problem as a multi-objective optimization problem which minimizes the total delay and reduces the number of conflicts simultaneously. As a complex air route networks needs to accommodate thousands of flights, the problem is a large-scale combinatorial optimization problem with tightly coupled variables, which make the problem difficult to deal with. Hence, in order to further improve the searching capability of the solution algorithm, a cooperative co-evolution (CC) algorithm is also introduced to divide the complex problem into several low dimensional sub-problems which are easier to solve. Moreover, a dynamic grouping strategy based on the conflict detection is proposed to improve the optimization efficiency and to avoid premature convergence. The well-known multi-objective evolutionary algorithm based on decomposition (MOEA/D) is then employed to tackle each sub-problem. Computational results using real traffic data from the Chinese air route network demonstrate that the proposed approach obtained better non-dominated solutions in a more effective manner than the existing approaches, including the multi-objective genetic algorithm (MOGA), NSGAII, and MOEA/D. The results also show that our approach provided satisfactory solutions for controllers from a practical point of view
    corecore